fun88体育网址 fun88体育网址

fun88下载安卓版

cccsss

电动汽车热管理技术探讨研究进展

来源:fun88下载安卓版    发布时间:2024-03-01 23:54:52

  纯电动汽车的综合能效高、环境污染比较小,是我国优先发展的新能源汽车形式,随着纯电动汽车有关技术持续不断的发展,产业规模逐渐扩大。受制于动力电池的单位体积内的包含的能量与材料性质,纯电动汽车的续航能力成为制约其发展的核心问题,而整车热管理系统的需求与能耗逐步引起了行业的广泛关注。行驶的机动性使汽车面临的环境天气特征情况复杂多变,对于纯电动汽车而言,没有了传统燃油汽车的发动机热系统,汽车热系统在满足车室环境控制的同时,还需要满足电池/电机/电控温度控制、换热器除霜、车窗玻璃除雾等需求,热管理技术是汽车驾乘安全与舒适的重要保证,已成为电动汽车发展的核心关键技术。

  乘员舱是汽车行驶过程驾驶人员所处的环境空间,为保证驾驶人员舒适的驾驶环境,乘员舱热管理需要控制车室内环境的温度、湿度、送风温度等。乘员舱在不一样的情况下的热管理需求如表 1 所示。

  动力电池温控是保障电动汽车高效安全运作的重要前提,在温度过高时将引发漏液、自燃等现象,影响驾驶安全; 温度过低时,电池充放电能力均会有一定的衰减。由于单位体积内的包含的能量高、轻量化,锂电池成为电动汽车应用最广泛的动力电池。锂电池温控需求和根据文献所估算出的不同状况下电池热负荷如表 2 所示。随着动力电池单位体积内的包含的能量的逐步提升、工作环境温区范围的拓展以及快充速度的攀高,动力电池温控在热管理系统中的重要性也更突出,不仅需要满足多种路况、不同充放电模式等车辆使用工况下的温控负荷变化,电池组间温度场均匀性与热失控防控,还需要满足严寒、高热高湿地区、夏热冬冷地区等不同环境工况下的所有温控需求。

  电机与电控是电动汽车关键的能量输出环节,电机工作过程中由于线圈电阻发热、机械摩擦生热等原因会产生大量热量,温度过高导致电机内部短路、磁体的不可逆退磁等问题。根据当前电动汽车市场不同车型电机配置情况,乘用车电机与电控温控需求和考虑电机效率和电机功率情况下的电机发热功率如表 3 所示。随着电动汽车的普及以及应用场景的增多,汽车动力需求不断的提高,电动汽车电机需要更高的功率、扭矩以及转速,同时也代表着更高的发热量,因此电机系统的热管理需求慢慢地提高。

  整车热管理是电动汽车发展的核心技术之一,涉及乘员舱温湿环境调控、动力系统温控、玻璃防雾除雾等多目标管理。根据热管理系统架构与集成化程度,将电动汽车热管理的发展归纳为三个阶段,如图 1 所示。从单冷配合电加热到热泵配合电辅热再到宽温区热泵与整车热管理逐步耦合,电动汽车整车热管理技术逐渐朝着高度集成化、智能化的方向发展,并且在宽温区、极端条件下的环境适应性能力逐渐提升。

  在电动汽车产业化起步阶段,基本是以电池、电机等动力系统的替代为核心技术发展起来的,车室空调、车窗除雾、动力部件温控等辅助系统是在传统燃油汽车热管理技术基础上逐步改进而来的。纯电动汽车空调与燃油汽车空调都是通过蒸气压缩循环来实现制冷功能,两者的区别是燃油汽车空调压缩机由发动机通过皮带间接驱动,而纯电动车则直接用电驱动压缩机来驱动制冷循环。燃油汽车冬季制热时直接利用发动机余热对乘员舱进行供热,不需要额外的热源,而纯电动车的电机余热不足以满足冬季制热的需求,因此冬季制热是纯电动汽车要解决的问题。正温度系数加热器( positivetemperature coefficient,PTC) 由 PTC 陶瓷发热元件与铝管组成,具有热阻小、传热效率高的优点,并且在燃油汽车的车身基础上改动较小,因此早期的电动汽车采用蒸气压缩制冷循环制冷加 PTC 制热的方式来实现乘员舱的热管理,例如图 2 所示的早期三菱公司的 i-MIEV 电动汽车。与燃油汽车由燃料提供能量不同,电动汽车由动力电池提供能量。电动汽车正常运行时,动力电池放电产热,温度上升,需要对电池进行降温。电池冷却的方法主要有空气冷却、液体冷却、相变材料冷却、热管冷却,由于空气冷却结构相对比较简单、成本低、便于维护,在早期的电动车上得到普遍应用。这一阶段的热管理主要形式是各个独立的子系统分别满足热管理的需求。

  在实际使用的过程中电动汽车冬季供热能耗需求较高,从热力学角度来说 PTC 制热的 COP 始终小于 1,使得 PTC 供热耗电量较高,能源利用率低,严重制约了电动汽车的行驶里程。而热泵技术利用蒸气压缩循环将环境中的低品位热量进行利用,制热时的理论 COP 大于 1,因此使用热泵系统代替 PTC 能增加电动汽车制热工况下的续航能力。图 3 所示为宝马 i3 车型采用热泵系统来实现冬季制热。此外,一汽奔腾与红旗、上汽荣威等也在部分车型上采用了热泵系统。然而在低温度的环境下,传统热泵系统制热量衰减严重,不足以满足电动汽车低温度的环境制热需求,需要额外的加热器辅助加热,因此热泵加 PTC 图 3 宝马 i3 电动汽车热泵系统 Fig.3 Heat pump of BMW-i3 辅热的制热方式成为电动汽车冬季低温环境下乘员舱制热的主要方式。随着动力电池容量与功率的逐步提升,动力电池运行过程的热负荷也逐渐增大,传统的空冷结构不足以满足动力电池的温控需求,因此液冷成为当前电池温控的主要方式。并且,由于人体所需的舒适温度和动力电池正常工作所处的温度相近,能够最终靠在乘员舱热泵系统中并联换热器的方式来分别满足乘员舱与动力电池制冷的需求。通过换热器以及二次冷却间接带走动力电池的热量,电动汽车整车热管理系统集成化程度有所提高。虽然集成化程度有所提升,但这一阶段的热管理系统只对电池制冷与乘员舱制冷进行了简单整合,电池、电机余热未得到一定效果利用。

  传统热泵空调在高寒环境下制热效率低、制热量不足,制约了电动汽车的应用场景。因此,一系列提升热泵空调低温工况下性能的方法得以开发应用。通过合理增加二次换热回路,在对动力电池与电机系统来进行冷却的同时,对其余热进行回收利用,以提高电动汽车在低温工况下的制热量。实验根据结果得出,余热回收式热泵空调与传统热泵空调相比,制热量明显提升。各热管理子系统耦合程度更深的余热回收式热泵以及集成化程度更高的整车热管理系统在特斯拉Model Y、大众 ID4.CROZZ 等车型上已得以应用( 图 4) 。但当环境和温度更低, 且余热回收量更少时,仅通过余热回收依然不足以满足低温度的环境下的制热量需求,仍需使用 PTC 加热器来弥补上面讲述的情况下制热量的不足。但随着电车整车热管理集成程度的逐渐提升,能够最终靠合理的增大电机发热量的方式来增加余热的回收量,来提升热泵系统的制热量与 COP,避免了 PTC 加热器的使用,在逐步降低热管理系统空间占用率的同时满足电动汽车在低温度的环境下的制热需求。除电池、电机系统余热回收利用外,回风利用也是降低低温工况下热管理系统能耗的方式。研究根据结果得出,低温度的环境下,合理的回风利用措施能够在避免车窗起雾、结霜的同时使电动汽车所需制热量下降 46% ~ 62%,最大能够降低约 40%的制热能耗。日本电装也开发了相应的双层回风 /新风结构,能够在防起雾的同时降低 30%由通风引起的热损失。这一阶段电动汽车热管理在极端条件下的环境适应能力逐渐提升,并朝着集成化、绿色化的方向发展。

  为进一步提高电池高功率情况下的热管理效率, 降低热管理复杂程度,将制冷剂直接送入电池组内部进行换热的直冷直热式电池温控方式也是目前的一个技术方案,一种电池包与制冷剂直接换热的热管理构型如图 5 所示。直冷技术可提升换热效率与换热量,使电池里面获得更均匀的温度分布,减少二次回路的同时增大系统余热回收量,进而提高电池温控性能。但由于电池与制冷剂直接换热技术一定要通过热泵系统的工作提高冷热量,一方面电池温控受限于热泵空调系统的启停,并对制冷剂环路的性能有一定影响,另一方面也限制了过渡季节的自然冷源利用,因此该技术仍需通进一步的研究改进与应用评估。

  电动汽车热管理系统由多个部件组成,最重要的包含电动压缩机、电子阀、换热器、各种管路以及储液器等主要部件。其中,压缩机、电子阀和换热器是热泵系统最核心的部件。随着电动汽车轻量化的需求不断的提高,系统集成化程度不断深入,电动汽车热管理部件也在向轻量化、集成化、模块化的方向持续不断的发展。为提高电动汽车在极端条件下的适用性,能够在极端条件下正常工作并满足汽车热管理性能需求的部件也在相应的开发应用。

  压缩机是空调系统的心脏,与燃油车不同,电动汽车空调系统由独立的电动压缩机直接驱动,为满足应用场景的需要,电动汽车压缩机还一定要满足轻量化、高效化和可靠性高的需求。涡旋式压缩机体积小、重量轻、效率高,因此成为目前车用电动压缩机的主要形式。在低温度的环境下,压缩机吸气压力较低,使吸气密度与质量流量较低,同时还使压缩机运行压力比增大,等熵效率降低,造成冬季制热效率低、制热量不足的问题。此外,压比过大还会造成压缩机排气温度过高,导致润滑油碳化失效,极度影响压缩机运行的安全。因此就需要增强压缩机在低温度的环境下的制热能力,同时降低压缩机排温。涡旋压缩机补气结构与系统原理如图 6 所示,中间补气能够引入额外的中间压力的低温制冷剂进入压缩机,降低压缩机的排气温度和比功。因此适用于电动汽车的中间补气式压缩机成为提升电动压缩机低温工况下性能的重要技术方案。补气式压缩机设计的研究内容大多分布在在补气口开口位置、数量、几何结构等方向上,相关研究内容如表 4 所示。Han Xinxin 等研制了一种适用于电动客车的喷射补气式热泵系统, 测试根据结果得出,在-20 ℃ /20 ℃ 测试工况下,喷射补气式热泵系统的 COP 为 1. 60,比无喷射补气热泵系统的 COP 提高 14. 5%。除研究工作外,纯电动客车大温差高能效热泵空调已在实车上得以验证,上海松芝、湖南华强等电动客车空调企业均推出了喷射补气准二级压缩的低环温热泵空调系统。

  油循环率对电动压缩机性能的影响也十分显著,系统的油循环率是通过压缩机内置的油分离 器来控制实现的。油循环率在约 5%时,系统能达到最佳性能,不同进油口结构对油分离效率影响较大,并且当压缩机转速在某个区间范围内时,油分离效率将达到最佳。因此,在对电动压缩机进行设计时需要仔细考虑油分离器与电动压缩机的适配性。

  换热器是汽车热管理系统重要部件,换热能力对 系统整体效率影响较大,并且换热器空间占用率较高,因此电动汽车换热器朝着高效化、结构紧密相连化发展。结构紧凑、传热效率高的微通道换热器成为电动汽车换热器的首选,并大范围的应用于电动汽车热管理系统。微通道换热器存在流量分配不均导致换热器表面温度分布不均以及由于结霜引起换热能力变弱的问题。提升微通道换热器性能的重点是合理的流量分配的方法与除霜技术。关于流量分配的相关研究如表 5 所示。较低的温度、较小的风量以及较大的湿度是引起换热器结霜的重要的因素。A. J. Mahvi 等的研究根据结果得出,提高换热器表面的疏水性能够延迟结霜,保持比较高的传热效率。除了对换热器表明上进行处理以防止换热器结霜之外,合理的除霜策略也必不可少。换热器除霜策略最重要的包含热气旁通除霜、逆循环除霜等。热气旁通除霜会导致车辆冬季制热性能不足,除霜速度缓慢。逆循环除霜的方式没办法保证乘员舱内温度的稳定。有学者提出将逆循环除霜与热气旁通除霜相结合的复合除霜方式,能够在大大降低能耗的同时,保证乘员舱温度的稳定性。

  随着电动汽车热管理各子系统之间的耦合程度逐渐加深,需要结构更紧凑、换热能力更强的换热器来完成子系统之间的热量传递,因此板式换热器成为例如电子冷却器等换热器的形式首选。板式换热器由带有波纹的板片叠加而成,常见的波纹形式有人字波纹、球形波纹、平直波纹等,如图 7 所示。为满足更高的换热量需求,提高电池冷却器传热效率,能够最终靠合理设计换热器内部结构,增加入口效应,提高湍流度等方式使其达到更高的传热系数。

  回热器的使用可提升制冷剂在膨胀阀进口的过冷度,是提升汽车空调性能的一种优化方案。套管式换热器具有结构相对比较简单、压降小的特点,能够很好的满足汽车空调回热器的需求。应用于汽车空调的回热器主要是同轴套管式回热器,为增强换热能力,通常会在换热器内部增加肋片,不同肋片的同轴套管式回热器结构如图 8 所示。受制于车身空间限制,直管式套管换热器长度会受到限制,导致回热量不足。如图 9 所示的螺旋管套管式回热器能够增大回热量,但会使制冷剂压降有所上升。随着系统集成程度的提高,回热器通常会集成到管路之中,或是内置于气液分离器之中,降低空间占用率的同时减少有害过热。

  热管理系统耦合程度的加深提高了热管理的效 率,但新增的阀件与管路使系统更复杂。为简化管路流程,降低热管理系统空间占用率,热管理系统部件在朝着集成化的方向发展。电动汽车热管理系统包括多个载冷剂回路,这些回路又各自包括膨胀水壶、电磁阀等部件,这些部件通过管道连接,结构较为复杂,并且占用大量的空间。为降低热管理系统载冷剂回路的复杂程度,特斯拉在 Model Y 车型上首次采用了八通阀,以代替传统系统中的冗余管路和阀件,如图 10 所示,这是一个拥有 8 个进出口通路的阀组,能够最终靠切换来实现不同管路组合的联通,大幅度降低系统管路复杂程度的同时满足热管理系统多种工作模式的切换。小鹏汽车通过如图 11 所示的集成式水壶结构,将原本多个回路的水壶及相应的阀件、水泵集成到一个水壶之上,大幅度降低载冷剂回路的复杂程度,降低空间占用率,同时降低管路中的压降与热损失,提高系统的综合效率。

  除载冷剂回路外,制冷剂回路集成化程度的提高也能够降低热管理系统的复杂程度,比亚迪提出一种阀组集成模块如图 12 所示,包括多个电磁膨胀阀与通断阀,并将板式换热器集成到阀组之上,能完成热管理系统多种运行模式的切换,降低管路数量的同时减少制冷剂充注量。

  为进一步降低热管理系统空间占用率,提高系统的集成程度,进一步将控制器、板式换热器、压缩机等主要部件集成为一体,同时将原本热管理系统众多的管路功能通过基板来实现的理念也在电动汽车热管理行业开始慢慢地发展,这样的高度集成可以使管路的数量大幅度降低有利于热管理系统的智能化控制与轻量化的发展。当然,对于系统的维护而言,集成式系统也带来了维护与检测成本提高的问题,需要同时解决集成件中零部件的标准化和可替换问题。

  虽然当下电动汽车热管理系统与早期相比,在集成化与节能高效等方面已经取得了较大发展,但在制冷剂替代、全气候宽温区热泵系统开发、智能化控制等方面仍面临较大挑战。

  2016 年《基加利修正案》将氢氟碳化物纳入管控范围,车用空调制冷剂替代成为行业的共性痛点。关于潜在替代制冷剂的研究应用大多分布在于 R1234yf、 CO2 与 R290,上述制冷剂主要物理性质如表 6 所示。R1234yf 与传统制冷剂 R134a 热力学性能相近,容易 实现制冷剂的替换,但价格相比来说较高。R290 和 CO2作为天然环保制冷剂,具有价格相对低廉的优势。CO2无毒、不可燃、具有优良的耐热性,并且在超临界状态下放热时具有较大的温度滑移,因此具备优秀能力的制热性能。R290 热泵系统具备优秀能力的制冷、制热性能,但由于 R290 是易燃性制冷剂,解决 R290 可燃性带来的安全风险隐患是实现 R290 热泵系统在电动汽车上应用的关键问题。

  R1234yf 与 R134a 制冷剂热力性质十分接近,可以在 R134a 热管理系统上直接用 R1234yf 进行替 换,但系统性能会略有降低。C. Zilio 等的研究根据结果得出,诸如优化膨胀阀和使用变排量压缩机等较小的改进可以使 R1234yf 制冷剂系统获得相似的系统性能。R1234yf 具有弱可燃性,能够最终靠增加二次回路的方式来降低燃烧的风险。由于专利以及合成技术等原因,R1234yf 较高的价格成为制约其推广应用的阻碍。

  作为价格低、环境友好的自然制冷剂,目前 CO2热泵系统已开始在实车上应用,但仍存在夏季制冷量不足、极寒条件下制热效率低等问题,研究领域的工作目标主要是逐步提升 CO2热泵系统的性能,尤其是高温环境下制冷性能的提升。东等开发的适用于低温度的环境的 CO2热泵系统如图 13( a) 所示,该 CO2热泵系统在膨胀阀与室内换热器之间增加了一个换热器。测试根据结果得出,该系统在低温度的环境下启动时制热量可达 3. 6 kW,COP 为 3. 15。中间冷却式热泵系统能够明显提升热泵系统性能。Chen Yiyu 等开发的中间冷却式跨临界 CO2图 13 CO2 热泵系统原理 Fig.13 Principle of CO2heat pump system 热泵如图 13( b) 所示,制冷模式时,压缩机中间冷却热量通过中间冷却器排出车外; 制热模式时,中间冷却的热量通过室内蒸发器得以回收利用,测试根据结果得出,该系统在制冷、制热工况下性能皆有所提升。Zou Huiming 等提出利用喷射器替代节流阀,其系统 流程如图 13( c) 所示,计算根据结果得出喷射器的使用可提升压缩机的进口压力,降低压缩机的工作压比,提高 CO2热泵系统综合性能。虽然 CO2热泵系统的制热性能优异,但由于跨临界 CO2热泵循环工作所承受的压力较高,对系统的安全性与可靠性提出了更高的要求。

  R290 作为另一种潜在的可替代环保自然制冷剂,具备优秀能力的制冷、制热性能。Liu Cichong 等对 R290 热泵系统在低温度的环境下的制热性能进行了研究,在-10 ℃工况下,与传统的 R134a 制冷剂系统相比,R290 热泵的制热量与 COP 分 别 提 升 55% 和 12. 3%。为提高 R290 系统的安全性,黄广燕等搭建了 R290 热泵系统及其二次换热回路,如图 14 所 示,根据结果得出在-25 ℃的环境和温度下,R290 系统的制热 COP 能达到 2. 16,具备优秀能力的制热性能。但 R290 的可燃性严重限制了其推广应用。奥特佳公司提出了以 R290 为制冷剂的二次回路电动汽车热泵技术及其产品,如图 15 所示,将可燃的 R290 回路置于前舱,通过不可燃的二次回路间接对车舱内的环境来控制,实现热管理系统模块化设计的同时,最大限度减少制冷剂的充注量。

  另一方面,混合制冷剂可以克服纯自然制冷剂自身物性的局限性,也是未来新型制冷剂热泵系统的发展趋势之一。Yu Binbin 等对 CO2 /R41 混合制冷 剂应用于汽车热泵系统的性能进行了研究。测试根据结果得出,在最佳配比下,该混合制冷剂的系统性能与纯 CO2制冷剂相比有所提升。理化所团队也对 CO2/ R290 混合制冷剂进行了研究,初步研究根据结果得出, CO2/R290 混合制冷剂的制冷制热性能与混合比紧 密相关,通过混合 R290 和 CO2,大大降低了 R290 的 可燃性和系统的运行压力,关于该混合制冷剂的最佳 混合比与系统特性还有待未来进行深入研究。

  电动汽车热管理系统的高效智能化与乘员舱热舒适性成为提高出行品质的关键保证。根据汽车本身行驶状况的不同,电动汽车各系统的热负荷会出现动态波动,并且电动汽车热系统耦合程度不断加深,对热管理系统的控制提出了更高的要求。因此智能化、一体化、精细化的控制方式将会是降低整车能耗、提升舒适性的控制方式。

  热泵系统传统的控制方式是通过开关控制、PID 控制等方法分别对各个独立的热管理对象与热管理执行机构来控制,根据设定值与实际值的偏差,通过调节压缩转速、膨胀阀开度、电加热器功率、循环泵功率、电子风扇风量等参数,使各控制参数维持在设定的范围。但随着热管理一体化程度的加深,PID 控制在处理复杂的动态控制过程中容易使系统出现超调或是震荡等问题,造成能耗升高的同时降低驾驶的舒适性。多支路耦合的复杂热泵系统的操控方法是当前电动汽车热管理系统控制技术的研究重点。对结构复杂的带余热回收的中间补气热泵系统,补气支路流量与主路流量对系统性能有重要影响,韩欣欣对中间补气压力等关键参数以及主路与支路流量分配特性及其控制开展了研究,得到流量分配比与压力比的关系,并发现存在最佳流量配比使系统性能达到最优。对于 CO2热泵气冷器侧温度压力多变的特点,Hu Bin 等成功将极值搜索操控方法( ESC 操控方法) 应用于跨临界CO2热泵系统最优排气压力的控制上,增加扰动的梯度搜索寻优操控方法可以实现复杂系统的精细化控制,通过对当前排气压力施加小幅度的扰动信号,同时监测系统性能的波动情况,通过数学分析寻找系统性能最佳的状态点,进而确定系统所需控制的最佳排气压力。除 ESC 控制方案外,基于模型预测的 MPC 操控方法无论是对局部系统还是全局系统的寻优控制上也都可以在一定程度上完成快速稳定的控制,MPC 操控方法也在CO2热泵系统控制上得以应用,但 MPC 方法过于依赖模型,需要大量的仿真和实测数据对模型进行支持,随着未来信息交互技术的发展与模型精确程度提高,MPC 操控方法将达到更高的精确性。

  为保证驾驶人员的热舒适性,需要将乘员舱温湿度控制在合理的波动范围以内。对于车内热湿环境控制,常规的控制方式是在前挡风玻璃防雾、保证车辆运行安全的前提下,针对车内的温湿度控制需求, 通过调节送风量以及送风温度来对车内环境来控制。张桂英基于对双蒸发器的电动汽车热泵系统的研究,提出了基于不同支路膨胀阀动态调节特性的双蒸发器控制思路,并利用比例回风形成连续风幕来防止车窗玻璃结雾。针对常规热泵空调低温度的环境下乘员舱供热不足的问题,刘稷轩通过玻璃表面结雾特性研究,以最大回风比为目标,通过电动风阀的调节来实现最大回风利用的控制,以此来降低电动汽车热泵系统的整体能耗。进一步,为更好地对车内热湿环境进行调控并降低热泵系统能耗,理化所团队还提出了利用侧玻璃强化凝结调控车内湿度以此来降低前挡玻璃除雾能耗的节能思路,并对不同涂层处理的侧玻璃凝结特性开展了理论与实验研究,研究表明,侧玻璃凝结具有一定的除湿潜力,但在涂层的覆盖形式与耐久性方面还需进一步开展研究。

  在整车热管理层面,乘员舱热管理不仅包括空调送风这一传统方式,座椅加热等新型方式也得到了研究和推广应用。除了热管理主动调节方法以外,合理的车身保温与结构设计与材料选择也能降低车内环境的波动性,提高热舒适性。此外,长时间舒适的驾驶环境容易令驾驶人员产生疲乏,影响驾驶的安全性,智能控制管理系统通过吹风或其他刺激手段提高驾驶人员精神集中度的相关研究也在进行中。

  电动汽车热管理系统从传统的燃油汽车空调系统改进而来,并慢慢地过渡到适用于电动汽车的热泵系统。与燃油汽车不同的是,电动汽车热管理对象还包括电池系统与电机系统。通过三电耦合,电动汽车整车热管理系统的耦合程度以及部件的集成化程度不断提升。

  为提高电动汽车在多环境下的适用性,进一步提升电动汽车的续航能力,需要开发适应宽温区、极端条件下的热泵系统。

  随着出行品质的需求日益提升,需要提高热管理对人体热舒适性的关注度,执行以人为本的、智能化的汽车热管理技术和控制策略。

  面对更加严苛的环境保护需求,应该着重关注环保制冷剂的替代性研究,并通过余热回收、喷射补气等技术开发来完成绿色节能高效的整车热管理系统的构建。

  日产汽车公司9日宣布,将于10月发售首款商用电动汽车“e-NV200”。它以多功能商务车“NV200 VANETTE”为原型,配备马达和电池,室内空间宽阔,加速性能出色。售价为388.44万日元起(约合人民币23.6万元)。     该车采取了液压制动,减速时的能量转换成电力的频度提升也是其特点之一,一次充电续航里程达185~190公里。电池设在车辆底部,可降低重心提高稳定性。     在日本的电动汽车市场上,除日产已推出的“聆风”外,三菱汽车也推出了“i-MiEV”。

  近日,国家发展改革委下发《关于电动汽车用电价格政策有关问题的通知》(以下简称《通知》),确定对电动汽车充换电设施用电实行扶持性电价政策。 《通知》明确,对经营性集中式充换电设施用电实行价格实惠,执行大工业电价,并且2020年前免收基本电费。居民家庭住宅、居住小区等充电设施用电,执行居民电价。电动汽车充换电设施用电执行峰谷分时电价政策,鼓励用户降低充电成本。 《通知》提出,要按照确保电动汽车使用成本显着低于燃油(或燃气)汽车使用成本原则,合理确定充换电服务费。在充换电设施经营企业向用户收取的电费、充换电服务费这两项收费中,电费依照国家规定的电价政策执行,充换电服务费由地方按照“有倾斜、有优惠”原则实行政府指导

  目前电动汽车的普及还有障碍,由于续航里程有限,大众担心给电动汽车充电不能像给燃油汽车加油那样方便,毕竟充电站还不像加油站那么常见。未解决电动汽车充电难的问题,最近欧盟研究人员开发出了一种电动汽车无线充电方法,希望借此让电动车充电变得更简单。8月28日,欧盟对外发布了这项研究的最新进展。 像WiFi一样给多辆电动汽车充电     其实,无线充电技术在很多领域早已开始使用,比如电动牙刷、遥控器,以及手机无线充电等。目前电动汽车充电都要先找到充电桩,再接上线缆充电,而无线充电就要方便多了。形象地说,充电桩等有线充电方式如同有线路由器,一根网线只能保证一台电脑联网,而无线充电如同可以同时为多个终端提供网络信号的WiFi。

  据彭博社报道,新的研究表明,使用柴油发动机排放的二氧化碳可能要比电动汽车少。 在未来几年内,全球各地将有数以百万计的环保电动汽车在道路上行驶,但藏在它们里面的却是并不那么清洁环保的电池。     各家主流汽车制造商都有生产可减少温室气体排放的电动汽车的计划,但是总的来说,它们的制造商大多数都是在世界上电网污染最严重的一些地区制造锂离子电池。 彭博新能源财经(Bloomberg New Energy Finance)的多个方面数据显示,到2021年,将有电能为1000多万辆使用60千瓦时电池组的汽车生产电池。大部分电力供应将来自中国、泰国、德国和波兰等依赖煤炭等不可再次生产的能源发电的国家。 电动汽车没那么清洁环保? 总部位于慕

  电动汽车用电池的快充是电动汽车研究与开发过程中的重要课题。尽管许多实用化的充电设备或商用充电器具有快充及均衡充电的功能,但其通常是按事先设定的充电电流对电池进行充电。这种方法不能根据电池充电过程中的详细情况对充电电流做调整,为了尽最大可能避免出现过充电,设定的充电电流通常偏小 ,因此充电时间仍然较长,而且由于不具备自适应能力,充电过程中有可能会出现过充电现象,对蓄电池的寿命不利。为了在实现快充的同时又不影响电池使用寿命,关键是要使快充过程具有自适应性,即根据电池的实际状态自动调节充电电流的大小,使其从始至终保持在充电可接受电流的临界值附近。为此,本文在电池快充理论基础上,对分段恒流充电办法来进行了试验研究,以期实现动力电池的智能

  用电池智能化快充研究 /

  大众 CEO赫伯特·迪斯(Herbert Diess)接受Automotive News采访时表示,以新 电动汽车 平台作为基础,大众可能会生产5000万辆电动汽车,它还准备在美国扩充制造设施。   迪斯说:“我们在美国查特怒加市(Chattanooga)设立工厂,当时一直在就在想,未来要扩充它,要模仿它。这座工厂还是太小了,我们正在考虑不同的选择,可能会生产电动汽车,也有一定可能会生产Atlas(SUV)衍生品,我们对选择保持开放态度。”   关于大众与 福特 正在探讨扩大合作一事,迪斯说扩大合作主要围绕商用车辆展开。他说:“我们正在讨论如何在美国分享少量平台和制造设施,这样做有意义。在对话时,我们还谈到了其它选择,如果真能达成一致,

  本文在现有电动汽车动力控制方法基础上,设计并实现了一种电助力转向与双后轮独立驱动相结合的模型电动车运动控制管理系统。该系统将电助力转向与双后轮轮毂电机驱动结合,省略了传统的离合器、变速器、主减速器及差速器等部件,大大简化了整车结构大幅度的提升了电动汽车电气化程度和可控制程度,充分的发挥了电动汽车高度电机一体化的优势。文中具体给出了系统各关键子系统的设计和操控方法,并通过台架实验证明了设计的有效性。 1 模型电动汽车系统总体构成 设计针对电动车( EV) 理想车况低速行驶,实现了一种双后轮独立驱动运动模型。系统结构如图1所示。 图1 电动汽车总体结构简图 模型车前轮控制采用电助力转向( EPS)系统,动力由两个后轮电机

  据悉,大众汽车已经在其德国茨维考工厂内对其首款电动汽车 ID.3 来测试,将为全面交付做准备。 目前,首批 ID.3 已经交付给测试司机,这些司机将对车辆进行日常使用压力测试。但是在软件方面,测试用车尚未达到量产车的水平。 大众汽车方面表示,约 150 辆大众 ID.3 将接受大众汽车员工在真实路况下的检验内测,预计测试行驶里程可达数十万公里,这中间还包括日常使用性能和实用性能等。据悉,大众汽车将对测试车辆的日常使用和驾驶的数据来进行分析,并进行评估,大众汽车认为此举是为了模拟交付后用户的用车行为,在 ID.3 正式上市前进行额外的质量保证。 图源:大众 在未来几周,车辆将分阶段交付给大众开姆尼茨(Chemnitz

  ,为上市前做足准备 /


  三合一电驱动系统效率测试

  用驱动电机系统可靠性试验方法

  驱动电机选配方法

  直播回放: 与英飞凌一同革新您的电动汽车温控系统:集成热管理系统(低压侧)

  报名赢【养生壶、鼠标】等|STM32 Summit全球在线大会邀您一起解读STM32方案

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~

  有奖直播 同质化严重,缺乏创新,ST60毫米波非接触连接器,赋予你独特的产品设计,重拾市场话语权

  伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常 ...

  一、前言脱水机包括分离机、离心机等,采用交流异步电机直接驱动,低速进料、高速脱水。大范围的应用于造纸、染整、食品制药、制糖、化工等行业 ...

  首先,要了解变频器与电机的基本知识。变频器是一种电子传动设备,大多数都用在控制三相交流电机的转速和输出电压,并具有节能和精细控制的优点 ...

  一、变频器频率调不上去的原因1、电源问题:如果供电电压过低或电源频率不稳定,会导致变频器发生故障,频率调节也会不稳定甚至调不起,需 ...

  三相交流电输入变频器是现代工业中普遍的使用的一种电力设备,它可以将交流电转化为可调速的交流电,大范围的应用于各种电机的控制和调节中。为了 ...

  Seoul Robotics推首款集成深度学习的3D感知软件 探测被遮挡物体

  有奖直播:安世半导体先进 SiC MOSFET 助力提升 EV-Charger 和 OBC 应用能效

  有奖直播报名:TI DLP技术在汽车行业的创新应用——增强型抬头显示

  听技术大咖侃谈Type-C 测量那些事儿—— 即刻获取能量,轻松闯关赢礼品!

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

上一篇:从 1837 到 201618 张图片细数电动汽车发展历程 下一篇:从生产到交付一辆新能源车诞生背后的隐形力量